On Counting Subring-Subcodes of Free Linear Codes Over Finite Principal Ideal Rings

نویسندگان

  • Ramakrishna Bandi
  • Alexandre Fotue Tabue
  • Edgar Martínez-Moro
چکیده

Let R be a finite principal ideal ring and S the Galois extension of R of degree m. For k and k, positive integers we determine the number of free S-linear codes B of length l with the property k = rankS(B) and k = rankR(B∩R). This corrects a wrong result [1, Theorem 6] which was given in the case of finite fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MDS codes over finite principal ideal rings

The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual...

متن کامل

Constacyclic Codes over Finite Principal Ideal Rings

In this paper, we give an important isomorphism between contacyclic codes and cyclic codes,over finite principal ideal rings.Necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite principal ideal rings are given.

متن کامل

MDS and self-dual codes over rings

In this paper we give the structure of constacyclic codes over formal power series and chain rings. We also present necessary and sufficient conditions on the existence of MDS codes over principal ideal rings. These results allow for the construction of infinite families of MDS self-dual codes over finite chain rings, formal power series and principal ideal rings.

متن کامل

Homogeneous weights of matrix product codes over finite principal ideal rings

In this paper, the homogeneous weights of matrix product codes over finite principal ideal rings are studied and a lower bound for the minimum homogeneous weights of such matrix product codes is obtained.

متن کامل

Multivariable codes in principal ideal polynomial quotient rings with applications to additive modular bivariate codes over $\mathbb{F}_4$

In this work, we study the structure of multivariable modular codes over finite chain rings when the ambient space is a principal ideal ring. We also provide some applications to additive modular codes over the finite field $\mathbb{F}_4$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.02213  شماره 

صفحات  -

تاریخ انتشار 2016